Excitation of histaminergic tuberomamillary neurons by thyrotropin-releasing hormone.

نویسندگان

  • Regis Parmentier
  • Sergej Kolbaev
  • Boris P Klyuch
  • David Vandael
  • Jian-Sheng Lin
  • Oliver Selbach
  • Helmut L Haas
  • Olga A Sergeeva
چکیده

The histaminergic tuberomamillary nucleus (TMN) controls arousal and attention, and the firing of TMN neurons is state-dependent, active during waking, silent during sleep. Thyrotropin-releasing hormone (TRH) promotes arousal and combats sleepiness associated with narcolepsy. Single-cell reverse-transcription-PCR demonstrated variable expression of the two known TRH receptors in the majority of TMN neurons. TRH increased the firing rate of most (ca 70%) TMN neurons. This excitation was abolished by the TRH receptor antagonist chlordiazepoxide (CDZ; 50 mum). In the presence of tetrodotoxin (TTX), TRH depolarized TMN neurons without obvious change of their input resistance. This effect reversed at the potential typical for nonselective cation channels. The potassium channel blockers barium and cesium did not influence the TRH-induced depolarization. TRH effects were antagonized by inhibitors of the Na(+)/Ca(2+) exchanger, KB-R7943 and benzamil. The frequency of GABAergic spontaneous IPSCs was either increased (TTX-insensitive) or decreased [TTX-sensitive spontaneous IPSCs (sIPSCs)] by TRH, indicating a heterogeneous modulation of GABAergic inputs by TRH. Facilitation but not depression of sIPSC frequency by TRH was missing in the presence of the kappa-opioid receptor antagonist nor-binaltorphimine. Montirelin (TRH analog, 1 mg/kg, i.p.) induced waking in wild-type mice but not in histidine decarboxylase knock-out mice lacking histamine. Inhibition of histamine synthesis by (S)-alpha-fluoromethylhistidine blocked the arousal effect of montirelin in wild-type mice. We conclude that direct receptor-mediated excitation of rodent TMN neurons by TRH demands activation of nonselective cation channels as well as electrogenic Na(+)/Ca(2+) exchange. Our findings indicate a key role of the brain histamine system in TRH-induced arousal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thyrotropin-releasing hormone selectively depresses glutamate excitation of cerebral cortical neurons.

The microiontophoretic application of thyrotropin-releasing hormone causes a selective reduction in neuronal excitation evoked by L-glutamate but not by acetylcholine in rat cerebral cortex. Thyrotropin-releasing hormone has no influence on the activity of acetylcholinesterase or on choline uptake and release from cerebral synaptosomes. This evidence for a selective interaction between a centra...

متن کامل

Proton- and ammonium-sensing by histaminergic neurons controlling wakefulness

The histaminergic neurons in the tuberomamillary nucleus (TMN) of the posterior hypothalamus are involved in the control of arousal. These neurons are sensitive to hypercapnia as has been shown in experiments examining c-Fos expression, a marker for increased neuronal activity. We investigated the mechanisms through which TMN neurons respond to changes in extracellular levels of acid/CO(2). Rec...

متن کامل

The Therapeutic Effect of Thyrotropin Releasing Hormone in Amyotrophic Sclerosis

Although the issue has not yet been fully resolved, there is reason to believe that TRI-I may have a trophic effect on the normal motoneuron and may transien­ tly improve the neurologic deficit in ALS. Since ALS is not a simple TRI-I deficiency disease, this improvement probably occurs via a secondary mecha -nism-possibly another neurotransmitter. It is uncertain at this time whether this effec...

متن کامل

Involvement of tuberomamillary histaminergic neurons in isoflurane anesthesia.

BACKGROUND The brain histaminergic system plays a critical role in maintenance of arousal. Previous studies suggest that histaminergic neurotransmission might be a potential mediator of general anesthetic actions. However, it is not clear whether histaminergic tuberomamillary nucleus (TMN) is necessarily involved in the sedative/hypnotic effects of general anesthetics. METHODS Male Long Evans...

متن کامل

Intermediary role of kisspeptin in the stimulation of gonadotropin-releasing hormone neurons by estrogen in the preoptic area of sheep brain

Introduction: The role of estrogen in the stimulation of gonadotropin-releasing hormone (GnRH) neurons is clear. These neurons do not express estrogen alpha receptors, so other mediator neurons should be present to transmit the positive feedback effect of estrogen to the GnRH neurons. Kisspeptin neurons have an important role in the stimulation of GnRH neurons, so they can be the mediator of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 14  شماره 

صفحات  -

تاریخ انتشار 2009